
The results,brained yield quantitative estimates of the errors associated with replace- 
ment of the spatial temperature distributions of the medium and of the heat-flux density of 
their values averaged over the boundary section, which permits a well-founded approach to the 
selection of algorithms of the step-by-step modeling of the thermal regime of a system of 
bodies. 

NOTATION 

T, Tm, temperature of the body and the conditional medium; q, heat-flux density; ~, heat 
conductivity; e, heat-transfer coefficient; qv, specific power of the heat sources; x, radius- 
vector; e, relative error in computing the temperature under average boundary conditions; ~k, 
governing dimension of a section of the boundary Fk; x', y', relative coordinates; Bi, Blot 
criterion. 
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APPROXIMATE SOLUTION OF THE STEFAN PROBLEM ON A SEGMENT 

A. O. Gliko, A. B. Efimov, 
and S. A. Labutin 

UDC 536.24.02 

The behavior of the temperature and the boundary near the stationary state are 
studied in the single-phase Stefan problem for certain types of thermal flux varia- 
tions. 

The perturbation of the stationary solution of the Stefan problem on a segment for small 
changes in the flux acting on the boundary was examined in [1,2], where general expressions 
are obtained for the boundary and temperature for 0~<oo ~ A detailed investigation of this 
approximate solution is quite important in applications but it is difficult for arbitrary 
flux perturbations. The mostcharacteristic cases (step and sinusoidal thermal flux varia- 
tion) are analyzed in detail in this paper, hence, asymptotic formulas are obtained for the 
solution for "small" and "large" times. The general solution of the problem under considera- 
tion is also simplified for slow and smooth flux changes. 

The problem is formulated as follows. Find the classical solution of a system of equa- 
tions with additional conditions 

*The method used to obtain this solution was also applied in the two-phase problem [3]. 
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Ov = a  z Ozv , "v>O, O < x < s ( z ) ,  aZ=k/9c; --k0-~--v (s(*), z ) - { - Q ( z ) =  ) ds 
Or Ox z Ox - -  "p'-'~' ~ > O, Q (r) 

(i) 

is a piecewise-continuous function, s(O) = So > 0 

v (x, O) = To + (T~ - -  To) Wso, 0 ~ x ~ So; v (0, T) = To, 

v (s  (% ~) = T ~ ;  �9 > 0.  

Here To=/=Tm, Mc(Tm--To).= ~0. The system (i) describes the behavior of a heat-conducting 
flat layer with moving phase (~0) or thermal (~ = 0) boundary s(z).* If the acting ther- 
mal flux has the form Q(z) = Qo(l + q(z)), where Qo = k(Tm-- To)/so, maxlq(T) I + 0, then as 

~>0 

is shown in [i, 2], the solution of the problem in an approximation linear in the flux varia- 
tions is given by the formulas: 

s (*) = @ (1 - -  ~ (~)), v (x, ~) = To + (TIn --  To) ~so + w (x/s (~), x), (2) 

where 

~(x) = S K ( z - - z ' ) q ( ~ ' ) d z ' ,  w(p, ~) = ~ L(p, x - - x ' ) q (~ ' )d , ' ,  (3) 
0 0 

and the following kernals are in the convolutions 

__~,2 = ex p ( - -  b] "d%) , "co= s3/a-;~ ~ ( 4 ) K(T) 

--~7~, b;m~o) (5) sin pb,~ exp (--  2 , 
L (p, x) = (T~- -  To) sin b~ 1 + 13 + [~2b~ ' 

where b n are positive roots of the equation ctg bn = Bbn. 

Relying on these results, we study the behavior of the solution for fluxes of the sim- 
plest form. 

_Step Perturbation. Let q(~) - q = const. Using (3)-(5), we obtain 

exp (-- b,t, ~o) (6) 
~( '~ )=q  I - - 2  2 " ~,, ~ q ,  

w(p, "~)= q(T~n-- To ) [p - -2  '~  sinpb~ exp (--b~r/ro) ] (7) 
_.u sinb~, b] (l + [5 _j_ [52b2) J ~ q ( V ~ - - T ~  L 

Hence it is seen that the boundary emerges monotonically at a new stationary level. The tem- 
perature v(x, ~) (according to property b) in [2]), while also varying monotonically, tends 
to a new linear distribution as T + ~. 

The asymptotic of the boundary for "small" times was studied in [i] and has the form 

( ~ ) !~(~)~q 1 --~-j 1/-r, axo r/T~; ~>0, r~.=~'ro, 0 ~ < < % m i n ( l :  [Sa). 

The asymptotic of the solution for "large" times is obtained by retaining the highest term 
in the series (6) and (7). Extracting these terms, we write the solution in the form 

~ ( r ) = q [ 1 - - 2  b~exp(--b~'c#")(l+[~-~2b~) (1~-6~(~))],, (8) 

w(p, ~ ) = q ( T ~ - - T o ) [ p - - 2  sin___ppb/ exp(--b~x/%) ( l + 6 , ( p ,  ~))].  (9) 
sin b x b~ (1 + 18 + ~Zb'~) 

*This is a provisional classification since certain phase transitions can, as is known, have 
a zero latent heat. 
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Here the remainders are estimated as follows 

0<261(T,<-~-2 1 +  2~5.c@exp - -~2.~o.  , z ' > 0 ;  

I~.,(p, ~)1<3 b-~-~ 1 +  exp - - a  s ; * > 0 ,  0 ~ p ~  1. 
b2 ~ T 0 

Hence, the time of solution emergence in the exponential regime can be estimated. For in- 
stance, it is a quantity~z0/10 for the boundary, where this estimate diminishes as 8 grows. 
Let us note that the remainder (8) can still be estimated independently of time: 

o < 8~ (,) < @ + 1)-2, 

from which i t  i s  c l e a r  t h a t  f o r  a s u f f i c i e n t l y  l a r g e  h e a t  of  t r a n s i t i o n  (~>~1) t he  b e h a v i o r  
of the boundary is close to the exponential on the whole time axis. The characteristic time 
of passage of the system into the new stationary state is determined from (8) and (9) and 
equals *0/b~0; it grows as 8 increases. 

Sinusoidal Perturbation. Let q(T) = q sin ~T; ~, q > 0. Let us analyze the behavior of 
the boundary. Substituting into (4), we have 

where 

('0 = q [g (*) + A sin ~'~ - -  B cos 0)'rl; g (% A, B > O, 

,• exp (-- b~z/*o) 
g (*) = 2o*0 - - .  0. 

=l (1 + [~ @ [~2b~) (b 4 .-J[- 0)2T0) "~....*-m 
(lO) 

This monotonic function describes the transition regime 

A = A~ (0)) = 2 = (1 + [~ + ~Zbn)(bn2 4 + 0)2~)~ ---~ 0, 
o)-~m 

(11) 

1 
B = B a (0)) = 20)*0. (1 + [3 + fiZb~)(b 4 + 0)2~) ,o..~. O. (12) 

n=| 

The steady-state regime can be written in the form 

('0 -~ ~(~) ~ qD sin (0)~ - -  ~), 

where 

D = D~ (0)) = VA~ (0)) + B~ (0)) ; ~ = q% (0)) = arctg _BB (0)) 
" As (0)) 

This is a harmonic oscillation with flux perturbation frequency and phase delay 0<~<~/2. 
The build-up time for this regime is determined from the inequality g(T)<<D to satisfy which 
it is sufficient that g(,)<<max(A; B) It follows from (10)-(12) that the last inequality is 
satisfied in every case by starting with a time on the order of several To/b~, while for 

D sufficiently low frequencies (a~0<<bt it is valid even for T = 0. Therefore, the character- 
istic build-up time of the boundary oscillations does not exceed To/b2, and tends to zero as 
the frequency decreases. 

Let us find the amplitude and phase of regular oscillations. We consider the Laplace 
transform of the solution 

~ ) . ~ - - M ( r )  = oq k ( i ) ,  whe= k ( 0 - - K ( * )  Oee [21), 

which has two singularities with highest real part (a first-order pole): ri,2 = • In 
the neighborhood of each it is expanded in a series of such a form (the upper sign refers to 
r, and the lower to r2): 

M 
n = - - |  
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where 

[-+-, = Res M (=h ion) = 
' = •  k (4- ion) coq k (r) = _+. q -- 

2r 2i 

Now applying the theorem of the asymptotic of the original at large times [4], we obtain 

, ~  [2 , ~  [ :  exp (imp) k ( i ~ ) -  exp ( - - i ~ )  k ( - -  i~) 
~ ( ~ ) : e x p ( i ~ )  ~,s r ( - - n ) ~  ~+~ + e x p ( - - i m ~ )  ~ - -  = q  �9 

~=-~ n=-x r (-- n)~ n=~ 2i 

The kernal K(r) is a real function, consequently, its transform possesses the conjugate 
property k(r*) = k*(r). Hence 

where 
('~) = q Im [exp (iorc) k (ico)] = qD~ (co) sin (o~I- -- % (o~)), 

2 ..... c h ? - - c o s ?  (13)  
D~(o~) = ? F ( s h ? + s i n ? ) 2  + [ 1 3 7 ( c h ? _ c o s ? ) + s h ? _ s i n ? ] a  _ ;  

~ go) = arctg 137 (ch ? - -  cos ?) + sh ? - -  sin ? 
sh ? -t- sin ? 

Here we introduced the notation ~ = 2~To. We now analyze the dependences obtained. 

i. Thermal boundary, [3 = 0: 

1 ch ? -- cos ? 
Do (co) = ~T0 ch ? + cos ? % (0~) = arctg sh ? -- sin ? 

' " sh ? § sin ? 

It can be shown that Do(m) decreases monotonically with frequency. The phase is not a mono- 
tonic function of m. It tends to a finite limit as the frequency grows %(m) ~ arctg I = .~/4, 

but intersects its asymptote at the points where y = ~n(n = i, 2, ...). 

For "low" frequencies (~To~ I) 

Do (co) ~ 1 / g  1 + o~z'co/6 , % (w) ~ o~ro/3. 
For "high" frequencies (o)% >> 1) 

Do(o)) ---- 1/F-~~ o , %(o~) ~ ~/4. (14) 

2. Phase boundary,~ > 0. In this case the decrease in amplitude with frequency can 
also be shown. As follows from (13), the dependence in the parameter 8 is continuous and 
monotonic~ Other conditions being equal, the higher the latent heat of transition of the 
material, the smaller the amplitude of the boundary oscillations and the higher the phase 
shift. Therefore, the curves of each of the parametric families DB(e ) and ~(~)are arranged 
continuously after each other, where the characteristics Do(m) and ~0(~) of the thermal bound- 
ary occupy an extreme location. 

For "low" frequencies (e% ~<1) 

D~ (co) ~ 1/lrl  + ~oZ~ [([3 + 1/3)z -+- 1/18], q% (co) _--_ arctg[(13 q-- 1/3) co%]. 

For "high" frequencies (cO'to >> l) 

D, 3 (co) = ] /  
| 2 1 

�9 v 0% T'I + (1 + 131/'2--~-~o )Z = ( f~176 >> 1/[3) ----- l[o~Tm, 

q~ (m) __--__ arctg (I q- [3 1" 2CO~o) ~ r~/2. (15) 

Let us note certain properties of the characteristics (see sketch). All the AFC (ampli- 
tude--frequency characteristics) emerge parabolically from the maximum for low frequencies and 
by decreasing tend hyperbolically to the abscissa axis at high frequencies. All the PFC 
(phase--frequency characteristics) emerge linearly from the origin and tend to the asymptote 
as m + ~. However, the thermal boundary differs qualitatively from the phase by its behavior 
as m + ~ (compare (14) and (15)). 

3. High Heat ofTransition, 8 + ~. According to [2], the kernal K(T) approximately 
equals the first term in the series (4) with a relative error of 61(T)<1/213 (T~0, [3>0). 
finding that b~ ~ ]/~ ~ for large 8, we hence obtain a solution on the whole time axis 

By 

1453 



0 2 /+ 6 60'~ o 

Sketch~ Amplitude-frequency D~ (,,,) 
and phase-frequency ~ (o~) characteris- 
tics of the boundary (15) for differ- 
ent values of the parameter B, 

[ o~z,~ exp ( - -  b~'dzo) sin ((o1: - -  arctg ez,,) ] 

R'e now examine the behavior of the boundary for small times. 

1. Thermal Boundary. In the interval0<T<<x0 we have 

a n d  

N q P (x) _ (. sin ~x'  
o J 1/~__x' 

K ('0---- 1I ~ [21 

dx' = q " ~ / r ~ [ s i n  r (r 0 - -  cos (o'gS= ((ox)l. 
I '  O T  0 

Here C=(y) and S=(y) are Fresnel integrals [5]. Expanding these latter for large values of 
the argument, and being limited to two terms in the expansion, we obtain a simplified formula 
for the solution in the times 2~/e~T<<x0: 

2. Phase  Boundary. 

We hence find 

~(T)==. q II 
COT m t 

IL (T) ~ [sin ((oz -- z/4) + 1/V~-'~ 1. (16) 

Inthe  interval 0~x<<%mirl(l; I~')we have K(T) "~ 1_--~ If-- ~-2 V"~-" ) ~  [2]. 

-- cos o~ + -~- ~ c o %  L 

In  t h e  narrower t i m e  i n t e r v a l 2 n / o ~ x < < % m i n ( l ;  ~ / I 0 ) ,  s i m p l i f i c a t i o n  y i e l d s  

1 -- cos o)x (17) p (T) ----- q 
O T  m 

From a comparison of (14) and (15) with (16) and  (17), respectively, it is possible to 
assess qualitatively the nature of the effect of a rapidly oscillating thermal flux (2n/~xo). 
By the lapse of several periods of flux oscillations the boundary starts to perform oscilla- 
tions close to the steady value but around the shifted middle position which departs to the 
initial value so with time. 

Periodic Perturbation. We assume that 

q (x) = qo + ~ q n  sin (nr -- ~n). 
n = l  

According to the elucidation above, the regular boundary regime will have the form 

~(x) = qo "q- ~ q,,D,~ (n~) sin (nco~ - -  a n - -  % ( n o ) ) ) ,  

n = l  
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where the characteristic time of its build-up does not exceed the quantity To/b~ (it agrees 
with this quantity for qo=/=0 or when the series for q(T) is infinite). 

We turn again to the initial general solution (2)-(5) and examine one case when it can 
be simplified. 

Slow-Small Perturbations. Let the flux variation be small together with its first and 
second derivatives, more accurately 

q (0) = O, q'(O) = O, max Iq (~)[--~ O, ~o max (1; 6) max }q i~) I ~ O, 
T~0 ~>0 

�9 ~ max (1; ~2) max ]q (~)i-+ O. 
T>O 

We write the solution in the new variables [2]: t = ~, p = x/s(~), v(x, 
p(Tm-- To) + u~(p, t), u1(p, t) = w(p, t) -- p(Tm-- To)~(t). Because of 

i exp q ( l')dt' 
u a ( P ' t ) = ( T ~ - - T ~  b~ P 1 + 6 +r~ (18) 

T) ~ u(p, t) = To + 
(3)-(5), we have 

Integrating twice by parts in (18) and evaluating the necessary sums by using limit theorems 
of operational calculus [4] (we do not present a detailed derivation), the following final 
expression can be obtained for the temperature 

u (p, t) = To + (T~ - -  To) Vp p (1 - -  p2) ~o~/(0 -~ p (5 - -  pZ) 
[ 6 6 

w h e r e  0 ~ = ~ q ( p ,  t, [ ~ ) ~ l ,  ~7(p, 0, 6 ) = 0 ,  ~q(p, t, [ ~ ) ~  1; 
gously for the boundary 

0 ~<2 ----- ~ (p, I, 6) ~< t. We find analo- 

where 0~=~q(t, 6)~]; ~q(0, 6)=0; ~q(l, 6) t--~ |; 0~=~q(t, 6)~t Let us emphasize that the 

quantities ~,~, ~. ~ depend on the function q taken for the argument that varies between 0 and 
t. However, if the second derivative of the flux is so small that the last terms in (19) and 
(20) can be neglected as compared with the remaining components (we do not refine the speci- 
fic conditions for this), then the solution (2) at each time will be expressed only in terms 
of the value of the flux and its derivative at the same instant. In other words, the de- 
pendence of the solution on the flux becomes almost local if the later changes sufficiently 
slowly and smoothly. Therefore, the integral operators in (3) have their own kind of "finite 
memory." With respect to the boundary operator, this deduction was made qualitatively in 
[i], however, an error was committed there in obtaining the formulas of type (20). 

NOTATION 

v(x, ~), temperature; T, time; x, space coordinate; s(T), trajectory of the moving bound- 
ary; a 2, thermal diffusivity; k, heat conduction; c, specific heat; %, specific heat of 
transition, and p, density. 
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